C	ode	No:	P18	BEC	Γ03				
	HAI	LL T	ICK	ET N	NUM	IBEI	}		

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 SWITCHING THEORY AND LOGIC DESIGN

(ECE Branch)

Time: 3 hours Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Compute the subtraction for 11011 – 10100 using 2's complement.	[2M]	1	
	b)	Simplify the Boolean function $F(x, y, z) = \sum (3, 4, 6, 7)$ using K-map,	[2M]	2	
	c)	Write differences between the decoder and multiplexer.	[2M]	3	
	d)	Define flip-flop and list the various types of flip-flops.	[2M]	4	
	e)	Draw the four-bit shift register.	[2M]	5	

PART-B Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	СО	KL			
UNIT-I								
2.	a)	Express the following numbers in decimal: (i) (10010.0100) ₂ (ii) (36.12) ₈ .		1				
	b)	Implement the Boolean function: $F = xy + x'y' + y'z$ using with NAND and inverter gates.	[5M]	1				
	OR							
3.	a)	Find the 1's and 2's complements of the following binary numbers: (i) 11000101 (ii) 10100000	[5M]	1				
	b)	Express the complement of the following functions in sum-of-minterms form: $F(A, B, C, D) = \sum (2,4,7,10,12,14)$	[5M]	1				
	UNIT-II							
4.	a)	Simplify the following Boolean function using Karnaugh maps: $F(w,x,y,z) = \sum (1,4,5,6,12,14,15)$	[5M]	2				
	b)	Draw and explain the implementation of full adder with two half adders and an OR gate.	[5M]	2				
		OR						
5.	a)	Simplify the following Boolean functions using Karnaugh maps: $F = A'B'C' + B'CD' + A'BCD' + AB'C'$	[5M]	2				
	b)	Draw and explain the carry lookahead generator.	[5M]	2				
		UNIT-III						
6.	a)	Define decoder. Construct 3x8 decoder using logic gates.	[5M]	3				
	b)	With neat sketches explain the Programmable Logic Array (PLA).	[5M]	3				
		OR						
7.	a)	Explain the 4 x 16 decoder constructed with two 3 x 8 decoders.	[5M]	3				
	b)	Implement the following two Boolean function with a PLA: $F_1(A, B, C)$	[5M]	3				
		$=$ $\sum (0, 1, 2, 4)$						
	UNIT-IV							
8.	a)	Discuss about basic architectural distinctions between combinational and sequential circuits.	[5M]	4				

Code No: P18ECT03

	b)	Draw and explain the clocked J-K Flip-Flop with truth table.	[5M]	4			
	OR						
9.	a)	Draw and explain the D -type positive-edge-triggered flip-flop.	[5M]	4			
	b)	Explain the Master-slave JK flip-flop with neat diagrams.	[5M]	4			
	UNIT-V						
10.	a)	Explain about Ring and Johnson Counter using Shift Register	[5M]	5			
	b)	Explain the following related to sequential circuits with suitable examples. (i) State diagram. (ii) State table.	[5M]	5			
OR							
11.	a)	Design a four-bit binary synchronous counter with D flip-flops.	[5M]	5			
	b)	What are the capabilities and limitations of finite state machines? Discuss.	[5M]	5			
