HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 SWITCHING THEORY AND LOGIC DESIGN
(ECE Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1	a)	Compute the subtraction for $11011-10100$ using 2's complement.	$[2 \mathrm{M}]$	1	
	b)	Simplify the Boolean function $F(x, y, z)=\sum(3,4,6,7)$ using K-map,	$[2 \mathrm{M}]$	2	
	c)	Write differences between the decoder and multiplexer.	$[2 \mathrm{M}]$	3	
	d)	Define flip-flop and list the various types of flip-flops.	$[2 \mathrm{M}]$	4	
	e)	Draw the four-bit shift register.	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Express the following numbers in decimal: (i) (10010.0100) ${ }_{2}$ (ii) (36.12) $)_{8}$.	[5M]	1	
	b)	Implement the Boolean function: $F=x y+x^{\prime} y^{\prime}+y^{\prime} z$ using with NAND and inverter gates.	[5M]	1	
OR					
3.	a)	Find the 1's and 2's complements of the following binary numbers: (i) 11000101 (ii) 10100000	[5M]	1	
	b)	Express the complement of the following functions in sum-of-minterms form: $F(A, B, C, D)=\sum(2,4,7,10,12,14)$	[5M]	1	
UNIT-II					
4.	a)	Simplify the following Boolean function using Karnaugh maps: $F(w, x, y, z)=\sum(1,4,5,6,12,14,15)$	[5M]	2	
	b)	Draw and explain the implementation of full adder with two half adders and an OR gate.	[5M]	2	
OR					
5.	a)	Simplify the following Boolean functions using Karnaugh maps: $F=$ $A^{\prime} B^{\prime} C+B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}+A B^{\prime} C$	[5M]	2	
	b)	Draw and explain the carry lookahead generator.	[5M]	2	
UNIT-III					
6.	a)	Define decoder. Construct 3x8 decoder using logic gates.	[5M]	3	
	b)	With neat sketches explain the Programmable Logic Array (PLA).	[5M]	3	
OR					
7.	a)	Explain the 4×16 decoder constructed with two 3×8 decoders.	[5M]	3	
	b)	Implement the following two Boolean function with a PLA: $F_{1}(A, B, C)$ $\bar{\sum}(0,1,2,4)$	[5M]	3	
UNIT-IV					
8.	a)	Discuss about basic architectural distinctions between combinational and sequential circuits.	[5M]	4	

	b)	Draw and explain the clocked J-K Flip-Flop with truth table.	[5M]	4	
OR					
9.	a)	Draw and explain the D-type positive-edge-triggered flip-flop.	[5M]	4	
	b)	Explain the Master-slave JK flip-flop with neat diagrams.	[5M]	4	
UNIT-V					
10.	a)	Explain about Ring and Johnson Counter using Shift Register	[5M]	5	
	b)	Explain the following related to sequential circuits with suitable examples. (i) State diagram. (ii) State table.	[5M]	5	
OR					
11.	a)	Design a four-bit binary synchronous counter with D flip-flops.	[5M]	5	
	b)	What are the capabilities and limitations of finite state machines? Discuss.	[5M]	5	

